Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[FastArithmeticTools][ReduceCoefficientsDim0] - reduce the coefficients of a polynomial w.r.t a 0-dim regular chain
Calling Sequence
ReduceCoefficientsDim0(f, rc, R)
Parameters
R
-
a polynomial ring
rc
a regular chain of R
f
polynomial of R
Description
The command ReduceCoefficientsDim0 returns the normal form of f w.r.t. rc in the sense of Groebner bases.
rc is assumed to be a normalized zero-dimensional regular chain and all variables of f but the main one must be algebraic w.r.t. rc. See the subpackage ChainTools for more information about these concepts.
R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this computation. The higher the degrees of f and rc are, the larger must be such that divides . If the degree of f or rc is too large, then an error is raised.
The algorithm relies on the fast division trick (based on power series inversion) and FFT-based multivariate multiplication.
Examples
We solve a system in 3 variables and 3 unknowns
Its triangular decomposition consists of only one regular chain
The polynomial in x is not normalized
Indeed its initial is not a constant in R
We compute the inverse of the initial of px w.r.t. rc Note that the Inverse will not fail if its first argument is not invertible w.r.t. its second one; computations will split if a zero-divisor is met. This explains the non-trivial signature of the Inverse function
We get the inverse the initial of px w.r.t. rc
We multiply px by the inverse of its initial and reduce the product w.r.t rc. The returned polynomial is now normalized w.r.t. rc. Note that only the polynomials of rc in y and z are used during this reduction process.
See Also
ChainTools, NormalForm, NormalFormDim0, NormalizePolynomialDim0, NormalizeRegularChainDim0, RegularChains
Download Help Document