Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ChainTools][Squarefree] - decomposition into square-free regular chains
Calling Sequence
Squarefree(rc, R,'normalized'='yes')
Parameters
rc
-
regular chain of R
R
polynomial ring
'normalized'='yes'
(optional) boolean flag
Description
The command Squarefree(rc, R) returns a triangular decomposition of rc into regular chains with square-free saturated ideals. This triangular decomposition is the sense of Kalkbrener, that is, the radical of the the saturated ideal of rc must equal the intersection of the radical ideals of the saturated ideals of the output regular chains.
If 'normalized'='yes' is provided, then the output regular chains are also normalized.
Examples
We define a ring of polynomials.
We define a regular chain, where one polynomial is a square modulo the other.
We remove this square by calling RegularChains[Squarefree].
See Also
Chain, ChainTools, Empty, Equations, PolynomialRing, RegularChains, Triangularize
Download Help Document