Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[NumberOfSolutions] - compute the number of solutions over the algebraic closure
Calling Sequence
NumberOfSolutions(J)
NumberOfSolutions(G, tord)
Parameters
J
-
a polynomial ideal
G
a Groebner basis
a monomial order
Description
The NumberOfSolutions command computes the number of solutions of a system over the algebraic closure of the coefficient field, including multiplicities. A zero-dimensional system has a finite number of solutions.
Let G be a Groebner basis for the ideal, then the number of solutions is equal to the number of monomials not divisible by a leading monomial of G.
This function is part of the PolynomialIdeals package, and can be used in the form NumberOfSolutions(..) only after executing the command with(PolynomialIdeals). However, it can always be accessed through the long form of the command using PolynomialIdeals[NumberOfSolutions](..).
Examples
Observe that the generators of J are already a Groebner basis with respect to plex(x,y). The monomials not divisible by x^2 or y^3 are
See Also
Groebner[Basis], PolynomialIdeals[IsZeroDimensional]
References
Cox, D.; Little, J.; and O'Shea, D. Using Algebraic Geometry. New York: Springer-Verlag, 1998.
Download Help Document