Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
OreTools[FractionFree][RightEuclidean] - return the subresultant sequence of first kind
OreTools[FractionFree][RightPseudoQuotient] - return the right pseudo-quotient
OreTools[FractionFree][RightPseudoRemainder] - return the right pseudo-remainder
Calling Sequence
RightEuclidean(Poly1, Poly2, A, 'c1', 'c2')
RightPseudoRemainder(Poly1, Poly2, A, 'mult', 'pquo')
RightPseudoQuotient(Poly1, Poly2, A, 'mult', 'prem')
Parameters
Poly1, Poly2
-
Ore polynomials; to define an Ore polynomial, use the OrePoly structure.
A
Ore algebra; to define an Ore algebra, use the SetOreRing function.
c1, c2, mult, pquo, prem
(optional) unevaluated names.
Description
The RightEuclidean(Poly1, Poly2, A) calling sequence returns a list [m, S] where m is a positive integer and S is an array with m elements storing the subresultant sequence of the first kind of Poly1 and Poly2.
If Poly1 and Poly2 are fraction-free, and the commutation rule of the Ore algebra A are also fraction-free, then the output of RightEuclidean is fraction-free.
If the optional fourth argument to the RightEuclidean command c1 is specified, the first co-sequence of Poly1 and Poly2 is assigned to c1, so that:
and c1[m+1] Poly2 is a least common left multiple (LCLM) of Poly1 and Poly2.
If the optional fifth argument to the RightEuclidean command c2 is specified, the second co-sequence of Poly1 and Poly2 is assigned to c2, so that:
and c1[m+1] Poly2 = - c2[m+1] Poly1 is an LCLM of Poly1 and Poly2.
The RightPseudoRemainder(Poly1, Poly2, A) calling sequence returns the right pseudo-remainder R of Poly1 and Poly2 such that:
where the degree of R is less than that of Poly2, pquo is the right pseudo-quotient, and mult (the multiplier) is the sigma power of the leading coefficient of Poly2.
If the fourth argument 'mult' is specified, it is assigned the multiplier defined above. If the fifth argument 'pquo' is specified, it is assigned the right pseudo-quotient defined above.
The RightPseudoQuotient(Poly1, Poly2, A) calling sequence returns the right pseudo-quotient Q of Poly1 and Poly2 such that:
where the degree of the right pseudo-remainder prem is less than that of Poly2 and mult (the multiplier) is the sigma power of the leading coefficient of Poly2.
If the fourth argument 'mult' is specified, it is assigned the multiplier defined above. If the fifth argument 'prem' is specified, it is assigned the right pseudo-remainder defined above.
Examples
Check the result
See Also
OreTools, OreTools/OreAlgebra, OreTools/OrePoly, OreTools[Euclidean], OreTools[FractionFree], OreTools[Quotient], OreTools[Remainder], OreTools[SetOreRing]
References
Li, Z. "A subresultant theory for Ore polynomials with applications." Proc. of ISSAC'98. pp. 132-139. Edited by O. Gloor. ACM Press, 1998.
Download Help Document