Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
MatrixPolynomialAlgebra[HermiteForm] - compute the Hermite normal form of a Matrix (in row or column form)
Calling Sequence
HermiteForm(A, x, out)
HermiteForm[row](A, x, out)
HermiteForm[column](A, x, out)
Parameters
A
-
Matrix
x
name; variable name of the polynomial domain
out
(optional) equation of the form output = obj where obj is one of 'H' or 'U', or a list containing one or more of these names; select result objects to compute
Description
The HermiteForm(A, x) and HermiteForm[row](A, x) commands compute the Hermite normal form (row-reduced echelon form) of an m x n rectangular Matrix of univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q, that is, univariate polynomials in x with coefficients in Q(a1,...,an).
The HermiteForm[column](A, x) command computes the Hermite normal form (column-reduced echelon form) of A.
The row (column) Hermite normal form is obtained by performing elementary row (column) operations on A. This includes interchanging rows (columns), multiplying a row (column) by a unit, and subtracting a polynomial multiple of one row (column) from another.
The number of nonzero rows (columns) of the Hermite Form, H, is the rank of A. If n = m, then where normal means unit normal, that is, monic.
Option
The output option (out) determines the content of the returned expression sequence.
As determined by the out option, an expression sequence containing one or more of the factors H (the Hermite normal form) or U (the transformation Matrix) is returned. If obj is a list, the objects are returned in the order specified in the list.
The returned Matrix objects have the property that for row Hermite normal form, and for column Hermite normal form.
Examples
See Also
expand, indets, LinearAlgebra[Determinant], LinearAlgebra[RowOperation], map, Matrix, MatrixPolynomialAlgebra, mul
Download Help Document