Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[DiagonalMatrix] - construct a (block) diagonal Matrix
Calling Sequence
DiagonalMatrix(V, r, c, options)
Parameters
V
-
Vector or list; the diagonal entries
r
(optional) non-negative integer; row dimension of resulting Matrix
c
(optional) non-negative integer; column dimension of resulting Matrix
options
(optional); constructor options for the result object
Description
The DiagonalMatrix(V) command constructs a (block) diagonal Matrix whose diagonal entries, starting from the upper left corner, are the elements of V.
If V is a Vector or a list of scalar values, then the blocks are 1 x 1 and DiagonalMatrix(V) constructs a diagonal Matrix.
If V is a list [B1, B2, ..., Bn] containing any non-scalar value, then the blocks are not necessarily 1 x 1 and DiagonalMatrix(V) builds a Matrix by placing each element, Bj, of V as an expanded block of entries, with each block placed immediately below and to the right of its predecessor. If the elements of V are all square (scalar values or square Matrices), a diagonal or block diagonal Matrix in the usual sense is returned.
Either the column dimension, or both the row and column dimension of the resulting Matrix may be included in the calling sequence. If these optional parameters are omitted, the size of the constructed Matrix is determined from the natural corresponding dimension of V.
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
The default shape of the resulting Matrix can be overridden by including a mutable shape in options.
By using this function in conjunction with the JordanBlockMatrix function, you can easily create a Jordan Form Matrix.
This function is part of the LinearAlgebra package, and so it can be used in the form DiagonalMatrix(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[DiagonalMatrix](..).
Examples
See Also
LinearAlgebra[CompanionMatrix], LinearAlgebra[JordanBlockMatrix], LinearAlgebra[JordanForm]
Download Help Document