Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[Normalize] - normalize a Vector
Calling Sequence
Normalize(V, p, ip, conj, options)
Parameters
V
-
Vector
p
(optional) non-negative number, infinity, Euclidean, or Frobenius; norm selector
ip
(optional) BooleanOpt(inplace); specifies if output overwrites input
conj
(optional) BooleanOpt(conjugate); specifies whether to use complex conjugates when computing the norm
options
(optional); constructor options for the result object
Description
The Normalize(V) function returns a Vector in which each component of V has been divided by the infinity-norm for V.
An alternate norm may be selected by using the Normalize(V, p) form of the calling sequence.
The inplace option (ip) determines where the result is returned. If given as inplace=true, the result overwrites the first argument. Otherwise, if given as inplace=false or if this option is not included in the calling sequence, the result is returned in a new Vector.
The condition inplace=true can be abbreviated to inplace.
The inplace option must be used with caution since, if the operation fails, the original Vector argument may be corrupted.
The conjugate option (conj) determines whether complex conjugates are used when computing the norm of the input Vector, V. Note that the form conjugate=false has an effect only if a norm selection parameter is also given which specifies an even power norm (for example, Normalize(V, 2, conjugate=false).
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Vector constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
The inplace and constructor options are mutually exclusive.
This function is part of the LinearAlgebra package, and so it can be used in the form Normalize(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[Normalize](..).
Examples
See Also
LinearAlgebra[VectorNorm], type[BooleanOpt], Vector
Download Help Document