Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[BandMatrix] - construct a banded Matrix
Calling Sequence
BandMatrix(L, n, r, c, options)
Parameters
L
-
list of scalars or lists of scalars; diagonal of the banded Matrix
n
(optional) non-negative integer; number of subdiagonals in resulting Matrix
r
(optional) non-negative integer; row dimension of resulting Matrix
c
(optional) non-negative integer; column dimension of resulting Matrix
options
(optional); constructor options for the result object
Description
The BandMatrix(L) function constructs a banded Matrix from the data provided by L.
If L is a list of lists of scalars, each list element of L is used to initialize a diagonal. The n+1st element of L is placed along the main diagonal. The other diagonals are placed in relation to it: L[n-j+1] is placed in the jth subdiagonal for j = 1 .. n and L[n+k+1] is placed in the kth superdiagonal for k = 1 .. nops(L) - n - 1. If any list element is shorter than the length of the diagonal where it is placed, the remaining entries are filled with 0.
If the row and column dimension parameters are omitted, the size of the constructed Matrix is the minimum size necessary to contain the specified diagonals.
If n is omitted in the calling sequence, BandMatrix attempts to place an equal number of sub- and super-diagonals into the resulting Matrix by using subdiagonals.
If L is a list of scalars, its elements are used to initialize all the entries of the corresponding diagonals. In this case, parameter n and r must be specified in the calling sequence. If the column dimension is not specified, it defaults to the row dimension. The jth subdiagonal is filled with L[n-j+1] for j = 1 .. n. The main diagonal is filled with L[n + 1]. The kth superdiagonal is filled with L[n + k + 1] for k = 1 .. nops(L)- n - 1.
The constructor options provide additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list. If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
By default, BandMatrix(L) constructs its output with shape and storage set to the appropriate banded shape and storage. The shape and storage of the resulting Matrix can be overridden by specifying the appropriate values in the options parameters.
This function is part of the LinearAlgebra package, and so it can be used in the form BandMatrix(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[BandMatrix](..).
Examples
See Also
Matrix, type[MVIndex]
Download Help Document