Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GraphTheory[HasArc]
GraphTheory[HasEdge]
Calling Sequence
HasArc(G, e)
HasArc(G, a)
HasEdge(G, e)
HasEdge(G, a)
Parameters
G
-
graph
e
edge - a set of two vertices in G
a
arc (directed edge) - a list of two vertices in G
Description
If e = {u,v} then HasEdge(G,e) returns true if the undirected graph G contains the (undirected) edge {u,v}, and false otherwise.
If a = [u,v], a directed edge, HasEdge(G,a) returns true if the undirected graph G has the undirected edge {u,v} in it.
If a = [u,v], HasArc(G,a) returns true if the directed graph G has the directed edge from vertex u to v in it, and false otherwise.
If e = {u,v}, HasArc(G,a) returns true if the directed graph G has both edges [u,v] and [v,u] in it, and false otherwise.
Because the data structure for a graph is an array of sets of neighbors, the test for edge membership uses binary search and hence the cost is O(log k) where k is the number of neighbors.
Examples
See Also
AddArc, AddEdge, DeleteArc, DeleteEdge, Graph, HighlightEdges
Download Help Document