Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry:-Tools[CanonicalBasis]
Calling Sequence
CanonicalBasis(S, T)
Parameters
S
-
a list of vectors, forms, or tensors
T
a list of vectors, forms, or tensors, the span of S must be contained in the span of T.
Description
The command CanonicalBasis(S, T) will return a list W of vectors, forms or tensors such that [i] span(S) = span(W) and [ii] the matrix whose rows are the coefficients of the elements of W with respect to T is in reduced row echelon form.
In the typical use of this command, S is a list of vectors or 1-forms on a manifold M and T is the standard basis for the tangent space or cotangent space of M.
The use of this command can dramatically simplify subsequent computations with the subspace spanned by S.
This command is part of the DifferentialGeometry:-Tools package, and so can be used in the form CanonicalBasis(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-CanonicalBasis.
Examples
Define a manifold M with local coordinates [x, y, z, w].
Example 1.
Define a 3-dimensional subspace of vectors by the span of S and compute a simpler base for this subspace relative to the coordinate basis T for the tangent space of M.
We use the command DGEqual to check that the span of S and W agree.
Example 2.
We use the same vectors S as in Example 1 but reverse the ordering of the vectors in the basis S.
We note that the matrix of coefficients of W with respect to T is in reduced row echelon form.
Example 3.
Find a canonical basis for the space of 2-forms spanned by S3.
See Also
DifferentialGeometry, Tensor, Tools, DGequal, GenerateForms, GenerateTensors, GetComponents
Download Help Document