Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[TraceFreeRicciTensor] - calculate the trace-free Ricci tensor of a metric tensor
Calling Sequences
TraceFreeRicciTensor(g)
TraceFreeRicciTensor(g, C)
TraceFreeRicciTensor(g, R)
Parameters
g - the metric tensor on the tangent bundle of a manifold
C - the curvature tensor of the metric g
R - the Ricci tensor of the metric g
Description
Let be a metric tensor with associated Ricci tensor R and Ricci scalar S. The trace-free Ricci tensor P is the symmetric, rank 2 covariant tensor with components , where is the dimension of the underlying manifold. It is trace-free with respect to the metric in the sense that where are the components of the inverse metric.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form TraceFreeRicciTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-TraceFreeRicciTensor.
Examples
Example 1.
In this example we calculate the trace-free Ricci tensor for a metric.
Calculate the trace-free Ricci tensor for the metric directly.
We check that is trace-free by computing the inverse metric and using the ContractIndices command.
The same calculation can be done with the TensorInnerProduct command.
Example 2.
The third calling sequence can be applied to any rank 2 symmetric tensor to construct a trace-free, rank 2 symmetric tensor.
The tensor is already trace-free, so its trace-free part is itself.
The trace-free part of the metric itself is always 0.
The trace-free part of is
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CovariantDerivative, Physics[D_], CurvatureTensor, Physics[Riemann], SectionalCurvature, RicciScalar, Physics[Ricci], RicciSpinor, NPCurvatureScalars
Download Help Document