Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[SectionalCurvature] - calculate the sectional curvature for a metric
Calling Sequences
SectionalCurvature(g, R, X, Y)
Parameters
g - a metric tensor on the tangent bundle of a manifold
R - the curvature tensor of the metric g, calculated from the Christoffel symbol of g
X, Y - a pair of vectors
Description
The sectional curvature of the metric g at a point p is the Gaussian curvature K (at p) of the geodesic surface whose tangent space is spanned by X_p and Y_p. If R' is the covariant form of the curvature tensor (that is,R' is a tensor of type (0,4)), then K = R'(X, Y, X, Y)/(g(X, X) g(Y, Y) - g(X, Y)^2).
If K is independent of the choice of the vectors X and Y then K =S/(n*(n-1)), where S is the Ricci scalar of g.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SectionalCurvature(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:- SectionalCurvature(...).
Examples
Example 1.
First create a 2 dimensional manifold M1 and define a metric g1 on M1.
For 2-dimensional manifolds the sectional curvature coincides with the Gaussian curvature R_{1212}/det(g). Let us check this formula.
Example 2.
First create a 3 dimensional manifold M2 and define a metric g2 on M2.
Define a pair of vectors which span a generic tangent plane.
Calculate the curvature and sectional curvature. Note that the sectional curvature is independent of the parameters r, s, t appearing in the vector fields X and Y.
Since the metric g2 has constant sectional curvature and the dimension of M2 is 3, the sectional curvature is 1/6 the Ricci scalar.
Example 3.
We re-work the previous example in an orthonormal frame.
Calculate the sectional curvature.
Example 4.
First create a 3 dimensional manifold M4 and define a metric g4 on M4.
Calculate the curvature and sectional curvature. In this example, the sectional curvature is dependent on the parameters r, s, t appearing in the vector fields X and Y.
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CurvatureTensor, Physics[Riemann], DGinfo, RicciTensor, Physics[Ricci]
Download Help Document