Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[RicciTensor] - calculate the Ricci tensor of a linear connection on the tangent bundle
Calling Sequences
RicciTensor(g)
RicciTensor(R)
Parameters
g - the metric tensor on the tangent bundle of a manifold
R - the curvature tensor of a connection on the tangent bundle of a manifold
Description
Let C be a connection on the tangent bundle of a manifold M with a curvature tensor R. The Ricci tensor is the contraction of R over the 1st and 3rd indices.
With the first calling sequence, the Ricci tensor for the Christoffel connection of the metric g is computed. With the second calling sequence, the Ricci tensor is computed directly from the given curvature tensor.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RicciTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-RicciTensor.
Examples
Example 1.
First create a 3 dimensional manifold M and define a connection on the tangent space of M.
Calculate the curvature tensor.
Calculate the Ricci tensor. Note that in general the Ricci tensor is not symmetric.
Example 2.
Define a frame on M and use this frame to specify a connection on the tangent space of M.
Calculate the Ricci tensor.
Example 3.
In this example we calculate the Ricci tensor for a metric and note that in this case the Ricci tensor is symmetric.
Calculate the Ricci tensor for the metric directly.
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], CovariantDerivative, Physics[D_], CurvatureTensor, Physics[Riemann], DGinfo, DirectionalCovariantDerivative, SectionalCurvature, RicciScalar, Physics[Ricci]
Download Help Document