Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[RicciSpinor] - compute the spinor form of the trace-free Ricci tensor
Calling Sequences
RicciSpinor(sigma, R)
Parameters
sigma - a solder form
R - (optional) the Ricci tensor for the metric determined by the solder form sigma
Description
Let g be a metric tensor. The trace-free Ricci tensor for g is defined by T = R - 1/4*g*S, where R is the Ricci tensor and S the Ricci scalar of g.
The command RicciSpinor(sigma) first computes the metric tensor g defined by the solder form sigma. The trace-free Ricci tensor T for g is then computed and converted, using the solder form sigma to a rank 4 covariant spinor with index type T_{ABA'B'}. (See convert/DGspinor.) Finally, a scalar factor of -1/2 is introduced according to standard conventions. See Stewart, page 85.
If the Ricci tensor R for the metric g has been previously computed, then the Ricci spinor will be computed more quickly using the second calling sequence RicciSpinor(sigma, R).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RicciSpinor(..) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-RicciSpinor.
Examples
Example 1.
First create a vector bundle over M with base coordinates [t, x, y, z] and fiber coordinates [z1, z2, w1, w2].
Define a metric g on M. For this example we use the Godel metric. (See (12.26) in Exact Solutions to Einstein's Field Equations.) Note that we have adjusted the metric to conform to the signature conventions [1, -1, -1, -1] used by the spinor formalism in the DifferentialGeometry package. See SpacetimeConventions.
Use DGGramSchmidt to calculate an orthonormal frame F for the metric g.
Use SolderForm to compute the solder form sigma from the frame F.
Calculate the Ricci spinor from the solder form sigma.
Example 2.
In this example we first calculate the Ricci tensor of the metric g and then use the second calling sequence for RicciSpinor.
Example 3.
We can check the result of Example 1 by direct computation, starting from the solder form sigma. First use the command SpinorInnerProduct to calculate the metric g3 from sigma. (Note that g3 coincides with the original metric g.)
Second, calculate the curvature tensor C, the Ricci tensor R, and the Ricci scalar S.
Calculate the trace-free Ricci tensor T.
Convert T to a spinor U.
Rearrange the indices of U and scale by (-1/2) to arrive at the Ricci spinor Phi1 (or Phi2).
See Also
DifferentialGeometry, Tensor, Convert, CurvatureTensor, Physics[Riemann], RicciTensor, Physics[Ricci], SpacetimeConventions, SolderForm, SpinorInnerProduct, WeylSpinor, Physics[Weyl]
Download Help Document