Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[Laplacian] - find the Laplacian of a differential form with respect to a metric.
Calling Sequences
Laplacian(g, omega)
Parameters
g - a covariant metric tensor on an n-dimensional manifold M
omega - a differential form on M
Description
The Laplace-Beltrami operator Delta is the second order linear differential operator which acts on p-forms omega by Delta(omega) = (d o delta + delta o d) (omega).
The delta differential operator is the first-order linear differential operator defined in terms of the exterior derivative operator d and the Hodge star operator * by
delta(omega) = (-1)^(k)(* d *)(omega),
where omega is a p-form and k = n*p +n +1. The form delta(omega) has degree p-1. Since a metric tensor is needed to define the Hodge star operator * , a metric is also needed to define delta.
The Laplacian(g, omega) computes the Laplacian Delta(omega) of the differential form with respect to the metric tensor g.
The command Laplacian:-ExteriorDerivativeStar(g, omega) computes delta(omega).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form Laplacian(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-Laplacian.
Examples
Define a manifold M with coordinates [x, y, z] and a metric g on M.
Example 1.
Define a differential 1-form alpha and suppress the printing of the arguments of its coefficients with the PDEtools[declare] command.
Compute the Laplacian of alpha.
Example 2.
Define a 2 form beta and compute its Laplacian.
Example 3.
Compute the delta derivative of the 2 form beta.
See Also
DifferentialGeometry, Tensor, ExteriorDerivative, HodgeStar
Download Help Document