Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[KillingBracket] - a covariant form of the Schouten bracket for symmetric tensors
Calling Sequences
KillingBracket(g, R, S)
Parameters
g - a covariant metric tensor on a manifold M
R, S - symmetric covariant tensor fields on M
Description
If R and S are symmetric covariant tensor fields of rank r and s, respectively, then T = KillingBracket(g, R, S) is a symmetric covariant tensor field of rank r + s - 1. If R and S correspond to Killing tensors for the metric g, then T is also a Killing tensor.
KillingBracket(g, R, S) can be defined in terms of the Schouten bracket for symmetric contravariant tensors by using the metric g to raise all the indices on the tensors R and S to obtain contravariant tensors U and V, then computing the Schouten bracket W = TensorBrackets(g, U, V, "Schouten") and then lowering all the indices of W. An explicit formula for the KillingBracket can be found in the article of N. M. J. Woodhouse.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KillingBracket(...) only after executing the commands with(DifferentialGeometry), with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KillingBracket.
Examples
Example 1.
See Also
DifferentialGeometry, JetCalculus, Tensor, CheckKillingTensor, KillingTensors
Download Help Document