Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[IndependentKillingTensors] - given two lists R and S of rank p Killing tensors, find a maximal sublist T of R such that the combined list of tensors [T, S] are linearly independent (over the real numbers)
Calling Sequences
IndependentKillingTensors(R, S)
Parameters
R, S - two lists of Killing tensors, the tensors in S must be linearly independent over the real numbers
Description
The suggested use of this program is as follows. Let K = [K_1, K_2, K_3, ... , K_{p-1}] be a list of bases for the Killing tensors of a metric g, from rank 1 to rank p-1. Let S be the Killing tensors of rank p which are symmetric tensor products of the elements of K. This list of Killing tensors S can be generated by the command SymmetricProductsOfKillingTensors. Now use the command KillingTensors to calculate the Killing tensors T of rank p. Then the program IndependentKillingTensors(T, S) will return the list of rank p Killing tensors in T not in the symmetric algebra of Killing tensors generated by S.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form IndependentKillingTensors(...) only after executing the commands with(DifferentialGeometry), with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-IndependentKillingTensors.
Examples
Example 1.
We consider a 2 dimensional manifold with a metric of constant negative curvature. For such metrics it is known that the Killing 1-forms algebraically generate all higher rank Killing tensors. We check this for rank 2 and rank 3 Killing tensors using the programs IndependentKillingTensors and SymmetricProductsOfKillingTensors.
Calculate the rank 1 Killing tensors.
Calculate the rank 2 Killing tensors which are symmetric products of the rank 1 Killing tensors.
Calculate the rank 2 Killing tensors by directly solving the Killing equations.
Use the IndependentKillingTensors command to deduce that all of the Killing tensors of rank 2 are algebraically generated by the Killing vectors.
Calculate the rank 3 Killing tensors which are symmetric products of the rank 1 Killing tensors.
Calculate the rank 3 Killing tensors by directly solving the Killing equations.
There are no "new" Killing tensors in T3.
Example 2.
In this example we find that there are 4 Killing 1-forms and 4 rank 2 Killing Tensors which are not symmetric products of the Killing 1-forms.
Calculate the rank 2 Killing tensors which are symmetric products of the rank 1 Killing tensors. There are 10 such Killing tensors.
Calculate the rank 2 Killing tensors which are not symmetric products of the rank 1 Killing tensors.
See Also
DifferentialGeometry, Tensor, KillingTensors, SymmetricProductsOfKillingTensors
Download Help Document