Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[SubalgebraNormalizer] - find the normalizer of a subalgebra
Calling Sequences
SubalgebraNormalizer(h, k)
Parameters
h - a list of vectors defining a subalgebra h in a Lie algebra g
k - (optional) a list of vectors defining a subalgebra k of g containing the subalgebra h
Description
The normalizer n of h in k is the largest subalgebra n of k which contains h as an ideal. The normalizer of h always contains h itself.
SubalgebraNormalizer(h, k) calculates the normalizer of h in the subalgebra k. If the second argument k is not specified, then the default is k = g and the normalizer h of in g is calculated.
A list of vectors defining a basis for the normalizer of h is returned.
The command SubalgebraNormalizer is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form SubalgebraNormalizer(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-SubalgebraNormalizer(...).
Examples
Example 1.
First initialize a Lie algebra and display the Lie bracket multiplication table.
Calculate the normalizer of S1 = [e3] in S2 = [e1, e3, e4].
Calculate the normalizer of S3 = [e2, e4] in S4 = [e1, e2, e4, e5].
Calculate the normalizer of S5 = [e1, e2] in the Lie algebra Alg1.
See Also
DifferentialGeometry, LieAlgebras, Centralizer, MultiplicationTable, Query[ideal]
Download Help Document