Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[SubRepresentation] - find the induced representation on an invariant subspace of the representation space
Calling Sequences
SubRepresentation(rho, S, W)
Parameters
rho - a representation of a Lie algebra g on a vector space V
S - a list of vectors in V whose span defines a rho invariant subspace of V
W - a Maple name or string, giving the frame name for the representation space for the subrepresentation
Description
If rho: g -> gl(V) is a representation and S is a subspace of V, then S is rho invariant if rho(x)(y) in S for all x in g and y in S. The command SubRepresentation(rho, W) returns the representation phi of g on the vector space S defined by phi(x)(y) = rho(x)(y) for all x in g and y in S.
Examples
Example 1.
We shall define a 4-dimensional representation rho of a 4 dimensional Lie algebra taken from the DifferentialGeometry Library, find an invariant subspace S of rho, and calculate the subrepresentation of rho on S.
Initialize the Lie algebra Alg1.
Initialize the representation space V.
Define the Matrices which specify a representation of Alg1 on V.
Define the representation with the Representation command.
Define a subspace of V.
We can use the Query command to check that S is a rho invariant subspace.
Define a frame for the induced representation of rho on S.
See Also
DifferentialGeometry, Library, LieAlgebras, Query, Representation, Retrieve
Download Help Document