Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[SatakeAssociate] - find the non-compact simple root associated to a given non-compact root in the Satake diagram
Calling Sequences
SatakeAssociate(alpha, Delta0, Deltac)
Parameters
alpha - a column vector, a non-compact root of a non-compact, simple Lie algebra
Delta0 - a list of column vectors, the simple roots of a non-compact simple Lie algebra
Deltac -(optional) a list of column vectors, defining the compact roots of non-compact simple Lie algebra
Description
Let Δ be the root system for a non-compact, simple Lie algebra. Let be a set of positive roots, the compact roots, be the simple roots and the compact simple roots. We chose the positive roots to be closed under complex conjugation. Then for each root there is a unique root such that The root is called the Satake associate of .
Examples
Example 1.
Here is the Satake diagram for and the corresponding simple roots.
All the roots are non-compact so that the Satake associate is just the complex conjugate, for example,
The root is its own associate.
Example 2
Roots and are compact. The root is real and is therefore its own Satake associate. The root satisfies
and is therefore also its own Satake associate.
Example 3.
There are no compact roots. The roots and are real and therefore are their own Satake associates. Because there are no compact roots the Satake associate of is its complex conjugate which is
Example 4.
The roots and are compact. Since
the Satake associate of is itself. Since
the Satake associate of is
These calculations agree with the output of the command SatakeAssociate.
See Also
DifferentialGeometry, CompactRoots, Details for Satake Diagram, DynkinDiagram, LieAlgebras, PositiveRoots, Simple Roots, SatakeDiagram, SimpleLieAlgebraData, SimpleLieAlgebraProperties
Download Help Document