Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[Radical] - find the radical of a Lie algebra
Calling Sequences
Radical(LieAlgName)
Parameters
LieAlgName - (optional) name or string, the name of a Lie algebra
Description
The radical Radical(g) of a Lie algebra g is the largest solvable ideal contained in g.
Radical(LieAlgName) calculates the radical of the Lie algebra g defined by LieAlgName. If no argument is given, then the radical of the current Lie algebra is found.
A list of vectors defining a basis for the radical of g is returned. If the radical of g is trivial, then an empty list is returned.
The radical of any Lie algebra g can be calculated as the orthogonal complement of the derived algebra of g with respect to the Killing form. See, for example, Fulton and Harris "Representation Theory", Graduate Texts in Mathematics 129, Springer 1991, Proposition C.22 page 484.
The command Radical is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Radical(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Radical(...).
Examples
Example 1.
First we initialize a Lie algebra.
We calculate the radical of Alg1 to be the 4 dimensional ideal [e4, e5, e6, e7] and check that the result is indeed a solvable ideal.
We remark that A = [e1, e4, e5, e6, e7] is a solvable subalgebra but it is not an ideal.
See Also
DifferentialGeometry, LieAlgebras, LeviDecomposition, Nilradical, Query[Ideal], Query[Solvable]
Download Help Document