Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[QuotientRepresentation] - find the induced representation on the quotient space of the representation space by an invariant subspace
Calling Sequences
QuotientRepresentation(rho, S, C, W)
Parameters
rho - a representation of a Lie algebra g on a vector space V
S - a list of vectors in V whose span defines a rho invariant subspace of V
C - a list of vectors in V defining a complementary subspace to S
W - a Maple name or string, giving the frame name for the representation space for the quotient representation
Description
If rho: g -> gl(V) is a representation and S is a subspace of V, then S is rho invariant if rho(x)(y) in S for all x in g and y in S. For any y in V, let [y] = y + S denote the coset of y in the quotient space V/S.
The command QuotientRepresentation(rho, S, C, W) returns the representation phi of g on the vector space V/S defined by phi(x)([y]) = [rho(x)(y)] for all x in g and [y] in V/S. The coset representatives of the vectors in C in the quotient space V/S give the basis used in V/S to calculate the matrices for the linear transformation phi(x).
Examples
Example 1.
Initialize the Lie algebra Alg1.
Initialize the representation space V.
Define the Matrices which specify a representation of Alg1 on V.
Define the representation.
Define a subspace S of V and use the Query command to check that it is invariant.
Pick a complement C to S in V. This complement need not be invariant.
Define a vector space for the induced representation of rho on V/S.
Compute the quotient representation. Note that in this example the matrices are just the lower 3x3 blocks of the matrices in the original representation.
See Also
DifferentialGeometry, Library, LieAlgebras, Query, Retrieve
Download Help Document