Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Query[LeviDecomposition] - check that a pair of subalgebras define a Levi decomposition of a Lie algebra
Calling Sequences
Query([R, S], "LeviDecomposition")
Parameters
R - a list of independent vectors in a Lie algebra g
S - a list of independent vectors in a Lie algebra g
Description
A pair of subalgebras [R, S] in a Lie algebra define a Levi decomposition if R is the radical of g, S is a semisimple subalgebra, and g = R + S (vector space direct sum). Since the radical is an ideal we have [R, R] in R, [R, S] in R, and [S, S] in S. The radical R is unique, the semisimple subalgebra S in a Levi decomposition is not.
Query([R, S], "LeviDecomposition") returns true if the pair R, S is a Levi decomposition of g and false otherwise.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
We initialize three different Lie algebras and print their multiplication tables.
Alg1 is solvable and therefore the radical is the entire algebra.
Alg2 is semisimple and therefore the radical is the zero subalgebra.
Alg3 has a non-trivial Levi decomposition.
It is easy to see that in this last example the Levi decomposition is not unique.
First we find the general complement to the radical R3 using the ComplementaryBasis program.
Next we determine for which values of the parameters {k1, k2, k3, k4, k5, k6} the subspace SS0 is a Lie subalgebra. We find that k1 = 0, k2 = k3, k4 = - k5, k6 = 0.
See Also
DifferentialGeometry, LieAlgebras, ComplementaryBasis, LeviDecomposition, MultiplicationTable, Query
Download Help Document