Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Query[CartanSubalgebra] - check if a list of vectors defines a Cartan subalgebra
Calling Sequences
Query()
Parameters
A - a list of vectors, defining a subspace of a Lie algebra
options - one or more of the keyword arguments rank = n (where is a positive integer), algebratype = "Semisimple" or algebratype = "Simple"
Description
Let be a Lie algebra. A Cartan subalgebra h is a nilpotent subalgebra whose normalizer in g is itself, that is, .
If the Lie algebra is semi-simple and the rank of the Lie algebra is then any Cartan subalgebra is of dimension and is Abelian. This simplifies checking if a given subspace of vectors is a Cartan subalgebra ( the nilpotency of h need not be verified).
Examples
Example 1.
We test if certain subalgebras of are Cartan subalgebras. First define the standard matrix representation for as the space of trace-free matrices.
Calculate the structure equations for these matrices and initialize the resulting Lie algebra.
Let's check that is semi-simple.
Test to see if a list of vectors defines a Cartan subalgebra.
Since has 2 elements, this implies that the rank of is 2. We can use this information to simplify checking that other subalgebras are Cartan subalgebras
Here is a 2-dimensional Abelian subalgebra which is not self-normalizing and therefore not a Cartan subalgebra.
Example 2.
The notion of a Cartan subalgebra is not restricted to semi-simple Lie algebras. We define a solvable Lie algebra and test to see if some subalgebras are Cartan subalgebras.
Any subalgebra which is an ideal cannot be a Cartan subalgebra.
See Also
DifferentialGeometry, CartanSubalgebra, LieAlgebraData, Query[Ideal], Query[Solvable], Query[Subalgebra], Query[Semisimple]
Download Help Document