Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[LieAlgebraRoots] - find a root or the roots for a semi-simple Lie algebra from a root space and the Cartan subalgebra; or from a root space decomposition
Calling Sequences
LieAlgebraRoots()
Parameters
X - a vector in a Lie algebra, defining a root space
CSA - a list of vectors in a semi-simple Lie algebra, defining a Cartan subalgebra
RSD - a table, defining a root space decomposition of a semi-simple Lie algebra
Description
Let g be a Lie algebra and h a Cartan subalgebra. Let be a basis for . A root for g with respect to this basis is a non-zero -tuple of complex numbers such that (*) for some .
The set of which satisfy (*) is called the root space of g defined by and denoted by A basic theorem in the structure theory of semi-simple Lie algebras asserts that the root spaces are 1-dimensional.
The first calling sequence calculates the root for the given root space . If is not a root space, then an empty vector is returned.
The second calling sequence simply returns the indices, as column vectors, for the table defining the root space decomposition.
Examples
Example 1.
Use the command SimpleLieAlgebraData to initialize the simple Lie algebra This is a 15-dimensional Lie algebra of skew-Hermitian matrices.
The explicit matrices defining are given by the StandardRepresentation command.
The diagonal matrices determine a Cartan subalgebra.
We use the Query command to check that (2.4) is a Cartan subalgebra.
Find the root for the root space
Note that the command RootSpace performs the inverse operation to - given a root, the command returns the corresponding root space.
Example 2.
If the complete root space decomposition is given as a table, then the command returns the indices of that table as column vectors.
See Also
DifferentialGeometry, CartanSubalgebra, Query, RootSpace, RootSpaceDecomposition
Download Help Document