Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebraData[FormStructureEquations] - convert a list of exterior derivative equations to a Lie algebra data structure
Calling Sequence
LieAlgebraData(FormStructureEquations, Basis, AlgName)
Parameters
FormStructureEquations - a list of equations of the form d(theta_k) = - C[i, j, k] theta_i &w theta_j (sum on i and j with i < j)
Basis - a list of unassigned names [theta_1, theta_2, ..., theta_N] which defines a basis for the dual 1-forms of the Lie algebra
AlgName - a name or string, the name to be assigned to the Lie algebra
Description
The command DGsetup is used to initialize a Lie algebra -- that is, to define the basis elements for the Lie algebra and its dual and to store the structure constants for the Lie algebra in memory. The first argument for DGsetup is a Lie algebra data structure which contains the structure constants in a standard format used by the LieAlgebras package.
One commonly used format for the structure equations of a Lie algebra is the set of exterior derivative equations for the dual 1-forms of the Lie algebra. For a 1-form theta in the dual of a Lie algebra, the exterior derivative is the 2-form defined by d(theta)(x,y) = - theta([x ,y]). The function LieAlgebraConvert enables one to create a Lie algebra in Maple from a list of exterior derivative equations.
The command LieAlgebraData is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form LieAlgebraData(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-LieAlgebraData(...).
Examples
Example 1.
In this example we create a Lie algebra data structure for a Lie algebra called Ex1 from a list of structure equations for the exterior derivatives of the dual 1-forms.
The structure equations contain arbitrary constants a, b, and c and we determine for which values of these parameters the Jacobi identities actually hold.
First we create the list of structure equations. The variables theta1, theta2, and theta3 must be unassigned names. They simply serve as place-holders for the purpose of entering in the structure equations.
We conclude that the structure equations define a Lie Algebra for arbitrary a, with b = c = 0.
See Also
DifferentialGeometry, LieAlgebras, ExteriorDerivative, LieAlgebraData, LieBracket, Query[Jacobi]
Download Help Document