Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[LeviDecomposition] - compute the Levi decomposition of a Lie algebra
Calling Sequences
LeviDecomposition(Alg, save)
Parameters
Alg - (optional) the name of an initialized Lie algebra
save - (optional) equation of the form saveTemporaryAlgebras = TF, where TF is true or false
Description
Every Lie algebra g admits a decomposition into the semi-direct sum g = r + s, where r is the radical of g and s is a semi-simple subalgebra. Such a decomposition is called a Levi decomposition. Since the radical is an ideal we have [r, r] in r, [r, s] in r, and [s, s] in s. The radical r is uniquely defined but the semi-simple subalgebra s is not.
LeviDecomposition(Alg) calculates a Levi decomposition of the Lie algebra Alg. If no argument is given, a Levi decomposition of the current algebra is computed.
With saveTemporaryAlgebras = true, the Lie algebras created by the program as part of the Levi decomposition algorithm are not erased and can be initialized for further analysis. Use this option in conjunction with userlevel[LeviDecomposition] := 2. The default is saveTemporaryAlgebras = false.
A list [rad, ss] of two lists of vectors is returned, where rad is a basis for the radical and ss is a basis for the semi-simple part. Either list may be empty.
The Levi decomposition is computed by the algorithm presented in the papers by Patera, Winternitz and Zassenhaus, Journal of Linear Algebra and its Applications 109:197--246(1988) and D. Rand
The command LeviDecomposition is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form LeviDecomposition(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-LeviDecomposition(...).
Examples
Example 1.
In this example we shall check that the output of LeviDecomposition does indeed lead to a Levi decomposition of the algebra.
First we initialize a 6 dimensional Lie algebra and display the Lie bracket multiplication table.
Now compute the Levi decomposition.
So the radical of this Lie algebra is [e1 - e4 + e6, e3, e5] and the semisimple part is [e1, e2, e4].
We can check this result by [i] calculating the radical directly, [ii] checking that R is an ideal, [iii] checking that R is solvable and [iv] checking that S is a semisimple subalgebra.
The first step in transforming the algebra Alg1 to canonical form is to change the basis of the Lie algebra to that provided by the Levi decomposition.
Compute the structure equations for the Lie algebra in this basis.
Initialize this Lie algebra data structure and display the multiplication table.
See Also
DifferentialGeometry, LieAlgebras, Killing, Query[Ideal], Query[LeviDecomposition]
Download Help Document