Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[Killing] - find the Killing form (matrix) of a Lie algebra, evaluate the Killing form on a pair of vectors, evaluate the Killing form on a subspace
LieAlgebras[KillingForm] - find the Killing form (symmetric tensor) of a Lie algebra
Calling Sequences
Killing(x, y)
Killing(Alg)
Killing(h)
KilllingForm(Alg)
Parameters
x,y - a pair of vectors in a Lie algebra g
Alg - (optional) the name of a Lie algebra
h - a list of vectors defining a basis for a subspace of a Lie algebra g
Description
The Killing form on a Lie algebra g is the symmetric quadratic form defined by Killing(x, y) = trace(ad(x).ad(y)) for any x, y in g. Here ad(x) and ad(y) are the ad matrices for the vector x and y.
In terms of the structure constants C^k_{ij} with respect to the basis e_i for g, Killing(e_i, e_j) = C^k_{il} C^l_{jk} (summation on l).
Killing() calculates the Matrix [Killing(e_i, e_j)] = [C^k_{il} C^l_{jk}], where the C^k_{ij} are the structure constants for the current Lie algebra.
Killing(Alg) calculates the Killing Matrix for the Lie algebra Alg.
Killing(h) calculates the Killing Matrix restricted to the subalgebra h.
The command Killing is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Killing(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Killing(...).
Examples
Example 1.
First initialize a Lie algebra and display the Lie bracket multiplication table.
Compute the Killing form on the vectors x = e1 + e2 and y = e1 - e2 + e3.
Compute the Killing form for the current Lie algebra.
Compute the Killing form restricted to the subspace S = [e2, e3].
Example 2.
Here is the Killing form for the Lie algebra from Example 1, given as a symmetric, covariant tensor on the Lie algebra.
See Also
DifferentialGeometry, LieAlgebras, Adjoint, MultiplicationTable, Query[Semisimple]
Download Help Document