Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[Invariants] - calculate the invariant vectors for a representation of a Lie algebra, calculate the invariant tensors for a tensor product representation of a Lie algebra
Calling Sequences
Invariants(rho)
Invariants(rho, T)
Parameters
rho - a representation of a Lie algebra g on a vector space V
T - list of tensors on V defining a subspace of tensors invariant under the induced representation of rho
Description
Let rho: g -> gl(V) be a representation of a Lie algebra g on a vector space V. A vector y in V is an invariant vector for the representation rho if rho(x)(y) = 0 for all x in g.
The procedure Invariants(rho) returns a list of the invariant vectors for the representation rho.
The procedure Invariants(rho, T) returns a list of the invariant tensors for the induced representation of rho acting on the tensors T.
Examples
Example 1.
We define a 6 dimensional representation of sl2 and find the invariant vectors.
We check this result using the ApplyRepresentation command.
Example 2.
In this example we calculate the invariant (1, 1) tensors, the invariant (0, 2) symmetric tensors and the type (1, 2) invariant tensors for the adjoint representation of the Lie algebra [3, 2] in the Winternitz tables of Lie algebras. We begin by using the Retrieve command to obtain the the structure equations for this Lie algebra.
There are no vector invariants.
There is one 1-form invariant.
There is 1 invariant type (1, 1) tensor.
There is 1 invariant symmetric type (0, 2) tensor (but no invariant metrics).
There are 3 type (1, 2) invariant tensors.
We can check the validity of the these calculations in two steps. First we use the matrices for the representation rho2 to construct linear vector fields on the representation space V. This gives a vector field realization Gamma of our Lie algebra. The invariance of the tensors Inv1, Inv2, Inv3 means that the Lie derivatives of these tensors with respect to the vector fields in Gamma vanishes.
Use the LieDerivative command to verify the invariance of the the tensors calculated by the Invariants command.
See Also
DifferentialGeometry, Tensor, Library, LieAlgebras, ApplyRepresentation, GenerateTensors, GenerateSymmetricTensors, Representation, Retrieve
Download Help Document