Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[GeneralizedCenter] - find the generalized center of an ideal
Calling Sequences
GeneralizedCenter(S1, S2)
Parameters
S1 - a list of vectors defining a basis for an ideal h in a Lie algebra g
S2 - (optional) list of vectors defining a basis for a subalgebra k in a Lie algebra g which contains h
Description
If h is an ideal of the Lie algebra g and h is also a subalgebra of k, then the GeneralizedCenter(h, k) is the ideal of vectors x in k such that [x,y] in h for all y in k. In particular, the generalized center of h in g is the inverse image of the center of the quotient algebra g/h with respect to the canonical projection map g -> g/h.
A list of vectors defining a basis for the generalized center of h in k is returned. If the optional argument S2 is omitted, then the default is k = g.
If the generalized center of h in k is trivial, then an empty list is returned.
The command GeneralizedCenter is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form GeneralizedCenter(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-GeneralizedCenter(...).
Examples
Example 1.
First initialize a Lie algebra.
Calculate the generalized center of [e1, e2] in the Lie algebra Alg1.
Calculate the generalized center of [e1, e4] in [e1, e2, e4, e5].
DifferentialGeometry, LieAlgebras, Center
Download Help Document