Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[CompactRoots] - find the compact roots in a root system for a non-compact semi-simple real Lie algebra
Calling Sequences
CompactRoots()
Parameters
Delta - a list of column vectors, defining the root system, positive roots or simple roots of a non-compact semi-simple Lie algebra
A - a list of vectors in a Lie algebra, defining a subalgebra of the Cartan subalgebra on which the Killing form is negative-definite
CSA - a list of vectors, defining the Cartan subalgebra of a non-compact semi-simple Lie algebra
Description
Let g be a semi-simple real Lie algebra. Then g is called compact if the Killing form of g is negative-definite, otherwise g is called non-compact.
Every non-compact semi-simple real Lie algebra g admits a Cartan decomposition g = t 4p . Here t is a subalgebra, p a subspace, [t, p] 4 p and [p, p] 4 t, that is, t and p define a symmetric pair. Moreover, the Killing form is negative-definite on t and positive-definite on p.
Let h be a Cartan subalgebra for g and let be the associated root system. Set a = h X p. Then the set of compact roots is defined to be
This means that if we choose a basis for a and extend to a basis for h, then the components of a compact root in the directions are 0. If determines the root space for then for With respect to the standard Cartan algebras for the non-compact, simple matrix algebras we consider here, the compact roots are precisely those which are purely imaginary complex numbers.
In the Satake diagram for a non-compact semi-simple real Lie algebra, the compact roots are given a different color from the other roots.
Examples
Example 1.
We find the compact roots for First we use the command SimpleLieAlgebraData to initialize the Lie algebra
For this example we use the command SimpleLieAlgebraProperties to generate the various properties of that we need.
Here is the Cartan subalgebra.
Here is the Cartan subalgebra decomposition
We check that the restriction of the Killing form to the diagonal matrices with imaginary entries is negative-definite. The restriction of the Killing form to the diagonal matrices with real entries is positive-definite.
The second list of vectors in (2.3) is therefore our subalgebra as described above.
Next we find the positive roots.
The compact roots are:
Note that these roots all have purely imaginary components.
Example 2.
We use the command SimpleLieAlgebraProperties to generate the various properties of that we need.
The restriction of the Killing form to the diagonal matrices with imaginary entries is negative-definite. The restriction of the Killing form to the diagonal matrices with real entries is positive-definite.
See Also
DifferentialGeometry, CartanDecomposition, Cartan Involution, CartanSubalgebra, DynkinDiagram, PositiveRoots, RootSpaceDecomposition, RestrictedRootSpaceDecomposition, SatakeDiagram, SimpleLieAlgebraProperties, SimpleRoots
Download Help Document