Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[BracketOfSubspaces] - calculate the span of the Lie bracket of two lists of vectors in a Lie algebra, calculate the span of the matrix commutator of two lists of matrices
Calling Sequences
BracketOfSubspaces(S1, S2)
BracketOfSubspaces(M1, M2)
Parameters
S1, S2 - two lists of vectors whose spans determine subspaces of a Lie algebra g
M1, M2 - two lists of square matrices
Description
The first calling sequence BracketOfSubspaces(S1, S2) calculates the span of the set of vectors [x, y] for all x in S1 and all y in S2.
The second calling sequence BracketOfSubspaces(M1, M2) calculates the span of all matrices [a, b] = a.b - b.a for all a in S1 and all b in S2.
A list of linearly independent vectors defining a basis for [S1, S2] or [M1, M2] is returned. If [S1, S2] is trivial (that is, all the vectors in S1 commute with all the vectors in S2 then an empty list is returned.
The command BracketOfSubspaces is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form BracketOfSubspaces(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-BracketOfSubspaces(...).
Examples
Example 1.
First we initialize a Lie algebra.
We bracket the subspaces S1 = [e1, e2] and S2 = [e3, e4].
We bracket the subspace S3 = [e1, e2, e3] with itself.
Example 2.
The command also works with lists of matrices.
See Also
DifferentialGeometry, LieAlgebras, Series
Download Help Document