Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
JetCalculus[HorizontalHomotopy] - apply the horizontal homotopy operator to a bi-form on a jet space
Calling Sequences
HorizontalHomotopy(omega)
Parameters
omega - a differential bi-form on the jet space J^k(R^n, R^m)
Description
Let omega be a bi-form of degree (r, s) on J^k(R^n, R^m). Then omega is called dH closed if dH(omega) = 0 where dH denotes the horizontal exterior derivative and dH exact if there exists a bi-form eta of degree (r - 1, s) on J^l(R^n, R^m) such that omega = dH(eta). If r < n, then every dH closed form is dH exact. If r = n, s > 0 and the integration by parts operator applied to omega yields I(omega) = 0, then omega is dH exact. If r = n, s = 0 and the EulerLagrange operator applied to omega yields E(omega) = 0, then omega is dH exact.
If dH(omega) = 0 or I(omega) = 0 then there are numerous algorithms for finding a bi-form eta such that omega = dH(eta). One approach is to use the horizontal homotopy operators. These operators are defined in terms of the higher Euler operators--the precise formulas are quite complex and the user is referred to Ian M. Anderson, Notes on the Variational Bicomplex
For s > 0 these operators are total differential operators and therefore, unlike the usual homotopy operators for the deRham complex or the vertical homotopy operators for bi-forms on jet spaces, do not involve any quadratures. For s = 0 the horizontal homotopy does involve quadratures and the optional arguments used in the commands DeRhamHomotopy or VerticalHomotopy can be invoked.
If omega is a bi-form of degree (r, s) with r > 0, then HorizontalHomotopy(omega) returns a bi-form of degree (r - 1, s).
The command HorizontalHomotopy is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form HorizontalHomotopy(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-HorizontalHomotopy(...).
Examples
Example 1.
Create the jet space J^3(E) for the bundle E = R x R with coordinates (x, u) -> (x).
Show that the EulerLagrange form for omega1 is 0 so that omega1 is dH exact.
Apply the horizontal homotopy operator to omega1.
Check that the horizontal exterior derivative of eta1 gives omega1.
Example 2.
Show that the integration by parts operator for the type (1, 2) omega2 is 0 so that omega2 is dH exact.
Apply the horizontal homotopy operator to omega2.
Example 3.
Show that the Euler-Lagrange form for omega3 is 0 so that omega3 is dH exact.
Apply the horizontal homotopy operator to omega3. Because omega3 is singular at u[2] = 0 we change the integration limits in the homotopy formula but still perform a radial integration. See HorizontalExteriorDerivative for a detailed discussion.
Check that HorizontalExteriorDerivative of eta3 gives omega3.
Instead of changing the limits of integration we can change the integration path to a sequence of coordinate lines. See HorizontalExteriorDerivative for a detailed discussion.
Example 4.
Create the jet space J^2(E) for the bundle E = R^3 x R^2 with coordinates (x, y, u, v) -> (x, y).
Define a type(1, 0) form omega4 and check that it is closed.
Apply the horizontal homotopy operator to omega4 to define eta4.
Check that omega4 = dH(eta4).
Define a type(2, 0) form omega5 and check that its Euler-Lagrange form vanishes identically.
So omega5 = dH(eta5a) but we can often find a much simpler answer.
See Also
DifferentialGeometry, JetCalculus, EulerLagrange, HorizontalExteriorDerivative, IntegrationByParts, VerticalExteriorDerivative, VerticalHomotopy, ZigZag
Download Help Document