Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
JetCalculus[AssignTransformationType] - assign a type (one of projectable, point, contact, differential substitution, generalized differential substitution, generic) to a transformation
Calling Sequences
AssignTransformationType(Phi)
Parameters
Phi - a transformation
Description
Let E -> M and F -> N be two fiber bundles. [i] A map Phi : E -> F which sends the fibers of E to fibers of N (and hence covers a map Phi0: M -> N) is called a projectable transformation. [ii] A map Phi: E -> F is called a point transformation. [iii] A transformation Phi: J^1(E) -> J^1(F) is called a contact transformation if the fiber dimensions of E and F are 1 and Phi pulls back the contact form on J^1(F) to a multiple of the contact form on J^1(E). [iv] If Phi: J^k(E) -> F and the total Jacobian of Phi is the identity matrix, then Phi is called a differential substitution. [v] A map Phi: J^k(E) -> F is called a generalized differential substitution. [vi] A transformation not of one the types [i]--[v] is called generic.
Explicit coordinate formulas for these various types of maps are given in Example 1.
Any transformation of type [i]--[v] can be prolonged to higher order jet spaces. See Prolong for further information.
The type of a transformation and its prolongation order can be determined by the command DGinfo with keyword "TransformationType".
The command AssignTransformationType is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form AssignTransformationType(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-AssignTransformationType(...).
Examples
Example 1.
First initialize various jet spaces of two independent variables and one dependent variable and prolong them to order 4.
Case 1. Projectable transformations from E21 to F21:
When a transformation is first defined, it is not given a type.
Now assign the transformation Phi1 a type.
This indicates that the transformation is a projectable transformation, the 0 indicates that the transformation has not been prolonged to a jet space.
Case 2. Point transformations:
Case 3. Contact transformations:
By the conventions adopted here, a contact transformation need not be a local diffeomorphism so that, in particular, the dimensions of the bundles E and F need not coincide.
Case 4. Differential Substitutions:
Case 5. Generalized Differential Substitutions:
See Also
DifferentialGeometry, JetCalculus, AssignVectorType, DGinfo, Prolong, Transformation
Download Help Document