Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GroupActions[IsotropyFiltration] - find the infinitesimal isotropy filtration for a Lie algebra of vector fields
Calling Sequences
IsotropyFiltration(Gamma, pt, option)
Parameters
Gamma - a list of vector fields on a manifold M
pt - a list of coordinate values [x1 = p1, x2 = p2, ...] specifying a point p in M
option - the optional argument output = O, where O is a list containing the keywords "Vector" and/or the name of an initialized abstract algebra for the Lie algebra of vector fields Gamma.
Description
The isotropy filtration of a Lie algebra of vector fields Gamma is the decreasing nested sequence of subalgebras Gamma^k_p = {X in Gamma | the coefficients of X and all their derivatives to order k vanish}. If X in Gamma^k_p and Y in Gamma^l_p, then [X, Y] in Gamma^(k + l)_p.
The command IsotropyFiltration is part of the DifferentialGeometry:-GroupActions package. It can be used in the form IsotropyFiltration(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-IsotropyFiltration(...).
Examples
Example 1.
First we obtain a Lie algebra of vector fields from the paper by Gonzalez-Lopez, Kamran, Olver in the DifferentialGeometry Library using the Retrieve command and then we compute the isotropy filtration.
We calculate the isotropy filtration as a subalgebra of Gamma.
We calculate the isotropy filtration as a subalgebra of the abstract Lie algebra defined by Gamma. To this end, we first calculate the structure constants for Gamma and initialize the result as Alg1.
Re-run the IsotropyFiltration command with the 3rd argument output = [Alg1].
We check that F does indeed define a filtration (note that there is an index shift Gamma^k_p = F[k + 1]).
All these brackets can be checked at once with Query/"filtration".
See Also
DifferentialGeometry, GroupActions, Library, LieAlgebras, BracketOfSubspaces, IsotropySubalgebra, LieAlgebraData, Query
Download Help Document