Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[ExteriorDerivative] - take the exterior derivative of a differential form
Calling Sequence
ExteriorDerivative(omega)
Parameters
omega
-
a Maple expression or a differential form
Description
The exterior derivative of a differential p-form omega is a differential form d(omega) of degree p + 1. There are two standard ways to intrinsically define the exterior derivative d.
The exterior derivative can be defined directly in terms of the Lie bracket. For a 1-form alpha and a 2-form beta this definition is:
d(alpha)(X, Y) = X(alpha(Y)) - Y(alpha(X)) - alpha([X, Y]),
d(beta)(X, Y, Z) = X(beta(Y, Z)) - Y(beta(X, Z)) + Z(beta(X, Y)) - X(beta([Y, Z])) + Y(beta([X, Z ])) - Z(beta([X, Y])),
where X, Y, Z are vector fields. Most of the references listed on the DifferentialGeometry References page contain the general formula for the exterior derivative of a p-form.
Alternatively, d can be defined uniquely as that linear operator acting on differential forms such that:
[i] for functions f, d(f)(X) = X(f), where X is any vector field;
[ii] d(alpha &w beta) = d(alpha) &w beta + (- 1)^p alpha &w d(beta), where alpha and beta are differential forms and p is the degree of alpha; and
[iii] d(d(alpha)) = 0.
The explicit coordinate formulas for the exterior derivatives of a function, a 1-form and a 2-form in 3 dimensions are given in Example 1.
The ExteriorDerivative command can also be applied to a list of differential forms.
This command is part of the DifferentialGeometry package, and so can be used in the form ExteriorDerivative(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-ExteriorDerivative.
Examples
Example 1.
We initialize a 3-dimensional manifold with coordinates [x, y, z].
We use the declare command in PDEtools to display the partial derivatives of the functions a(x, y, z), b(x, y, z) and c(x, y, z) in compact form.
The exterior derivative of a function:
The exterior derivative of a 1-form:
The exterior derivative of a 2-form:
Example 2.
By way of an example, we illustrate the fact that d^2 = 0.
Example 3.
The ExteriorDerivative command can also be applied to a list of forms or a matrix of forms.
Example 4.
The ExteriorDerivative command can also be used with adapted frames. First we define an adapted coframe for M.
Example 5.
The ExteriorDerivative command can be used with Lie algebras.
Example 6.
The ExteriorDerivative command can also be used with abstract differential forms.
See Also
DifferentialGeometry, LieBracket, DeRhamHomotopy, PDEtools[declare]
Download Help Document