Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[ComposeTransformations] - compose a sequence of two or more transformations
Calling Sequence
ComposeTransformation(Phi1, Phi2, Phi3, ...)
Parameters
Phi1, Phi2, Phi3
-
transformations
Description
ComposeTransformation(Phi1, Phi2, Phi3, ...) returns the composition of the transformations Phi1, Phi2, Phi3, ..., that is, the transformation Psi = Phi1 o Phi2 o Phi3 .... The domain frame of Phi1 must coincide with the range frame of Phi2, the domain frame of Phi2 must coincide with the range of frame of Phi3, and so on.
This command is part of the DifferentialGeometry package, and so can be used in the form ComposeTransformations(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-ComposeTransformations.
Examples
Example 1.
Define some manifolds.
Define transformations F: M -> N; G: P -> M; H: N -> Q.
Compute the compositions F o G, H o F and H o F o G.
Example 2.
We can express the transformation T: P -> P as the composition of 3 transformations A, B, C.
Example 3.
We can check that the transformation K is the inverse of the transformation F.
Example 4.
If pi: E -> M is a fiber bundle, then a section s of E is a transformation s: M -> E such that pi o s = identity on M.
Check that the map s is a section for E.
See Also
DifferentialGeometry, Tools, ApplyTransformation, DGequal, InverseTransformation, Transformation
Download Help Document