Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[solve_group] - represent a Lie Algebra of symmetry generators in terms of derived algebras
Calling Sequence
solve_group(G, y(x))
Parameters
G
-
list of symmetry generators
y(x)
dependent and independent variables
Description
solve_group receives a list G of infinitesimals corresponding to symmetry generators that generate a finite dimensional Lie Algebra G, and returns a representation of the derived algebras of G.
Derived algebras of G are defined recursively as follows:
is G;
is the Lie Algebra obtained by taking all possible commutators of ;
in general, is the Lie Algebra obtained by taking all possible commutators of .
Since G is assumed to be finite, there exists a positive integer with the following properties:
(i) =
(ii) is the smallest integer possessing property (i).
solve_group returns a list of lists of symmetries with the following properties:
The symmetries inside the list form the basis for
The symmetries inside the lists and together form the basis for .
In general, the symmetries inside the first lists of together form the basis for .
In other words, map(op, L[1..n+1-i]) is a basis for .
The group G is solvable if is the zero group. If G is solvable then the first element of the returned list will be the empty list [].
This function is part of the DEtools package, and so it can be used in the form solve_group(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[solve_group](..).
Examples
See Also
canoni, DEtools, DEtools/reduce_order, dsolve,Lie, equinv, eta_k, PDEtools, symgen, Xcommutator
Download Help Document