Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[infgen] - find the k-extension of the infinitesimal generator of a one-parameter Lie group
Calling Sequence
infgen([xi, eta], k, y(x))
infgen([xi, eta], k, ODE)
infgen([xi, eta], k, y(x), ODE)
Parameters
[xi, eta]
-
list of the coefficients of the symmetry generator (infinitesimals)
k
positive integer indicating the order of the required prolongation
y(x)
'dependent variable'; it can be any indeterminate function of one variable
ODE
ODE invariant under the given infinitesimals; required only if they represent dynamical symmetries
Description
The infgen command receives a pair of infinitesimals; k, the order of the required prolongation; and the dependent variable, say y(x). It returns the k-extension of the infinitesimal generator (see eta_k and symgen).
This command also works with dynamical symmetries, in which case the ODE assumed to be invariant under the given infinitesimals is also required as an argument. The right hand side of the given nth order ODE is then used to replace the nth order derivatives of the dependent variable appearing in the infinitesimal generator.
This function is part of the DEtools package, and so it can be used in the form infgen(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[infgen](..).
Examples
The infinitesimals xi and eta of the one-parameter rotation group and the first extension of the related infinitesimal generator
When an ODE is given as an argument, its right hand side is used to replace all occurrences of the highest derivative in the infinitesimal generator. To obtain a meaningful result, the ODE is invariant under the related symmetry group (or at least more general than the related invariant ODE). For example, this is the most general first order ODE invariant under rotations in the plane.
The first extension of the related infinitesimal generator is given by
It was not necessary to also give y(x) above, since this information is already present in the ODE.
The most general case of a point symmetry and the first extension of the related infinitesimal generator
The final example illustrates the most general case of a dynamical symmetry in the context of second order ODEs and the first extension of the related infinitesimal generator. When working with dynamical symmetries, the ODE itself is required as an argument.
See Also
DEtools, dsolve,Lie, eta_k, PDEtools, symgen
Download Help Document