Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
thiele - Thiele's continued fraction interpolation formula
Calling Sequence
thiele (x, y, v)
Parameters
x
-
list of independent values,
y
list of dependent values,
v
variable or value to be used in a rational function
Description
Important: The thiele function has been deprecated. Use the superseding function CurveFitting[ThieleInterpolation] instead. A call to thiele automatically generates a call to CurveFitting[ThieleInterpolation].
The thiele function computes the rational function of variable v (or evaluated at numerical value v) in continued fraction form which interpolates the points {(x[1], y[1]), (x[2], y[2]), ..., (x[n], y[n])}. If n is odd then the numerator and denominator polynomials will have degree . Otherwise, n is even and the degree of the numerator is and the degree of the denominator is .
If the same x-value is entered twice, it is an error, whether the same y-value is entered. All independent values must be distinct.
Examples
See Also
CurveFitting, CurveFitting[ThieleInterpolation]
References
The function Thiele uses Thiele's interpolation formula involving reciprocal differences. For more information, refer to:
Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover Publications, Inc., 1965. Chap. 25 p. 881, Formula 25.2.50.
Download Help Document