Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[symmetrize] - symmetrize the components of a tensor over any of its indices
tensor[antisymmetrize] - antisymmetrize the components of a tensor over any of its indices
Calling Sequence
symmetrize(T, [i1, i2, ... ])
antisymmetrize(T, [i1, i2, ... ])
Parameters
T
-
object whose components are being symmetrized/antisymmetrized
i1, i2, ...
indices of T of identical index character to symmetrize/antisymmetrize over
Description
Given any tensor_type, T, of rank 2 or more, and a list of indices (positive integers) of T of identical covariant/contravariant character, , the command symmetrize(T, [i1, i2, ... ]) computes the components of T symmetrized over the indices . Similarly, the command antisymmetrize(T, [i1, i2, ... ]) computes the components of T antisymmetrized over the indices .
Note that it is imperative that the indices given in the list all be of identical index character. It is not possible to symmetrize/antisymmetrize over indices of mixed type.
Also note that T must be of rank 2 or greater and that the number of indices given in the list must not exceed the rank of T and must be at least two.
For example, if T is a rank 3 tensor with index character , then symmetrize (T, [1,3]) would compute:
for each component , and antisymmetrize(T, [1,3]) would compute:
for each component . The call symmetrize(T,[1,2]) would generate an error since the first and second indices of T are of opposite index character.
If all of the indices of T are specified, then the result will be totally symmetric/antisymmetric. In this case, the components of the result are declared using the Maple symmetric/antisymmetric indexing function.
Simplification: Because these operations involve merely taking linear combinations of the components of T, the routine `tensor/lin_com/simp` is used once on each component of the result after all of the terms have been added.
This function is part of the tensor package, and so can be used in the form symmetrize(..) only after performing the command with(tensor) or with(tensor, symmetrize). The function can always be accessed in the long form tensor[symmetrize](..).
Examples
Define a rank 3 tensor_type with "symbolic" components.
Symmetrize T over its first two indices.
Anti-symmetrize T over all of its indices -- note that the result is totally antisymmetric.
Now define a symmetric rank 2 tensor (again with symbolic components).
Because g it totally symmetric, if you antisymmetrize it, you should get zero.
See Also
tensor, tensor/lin_com
Download Help Document