Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[Killing_eqns] - compute component expressions for Killings equations
Calling Sequence
Killing_eqns( T, coord, Cf2)
Parameters
T
-
symmetric covariant tensor
coord
list of coordinate names
Cf2
Christoffel symbols of the second kind
Description
The function Killing_eqns(T, coord, Cf2 ) computes the expressions for Killing's equations for each component of the totally symmetric covariant tensor T. Specifically, the symmetric part of the covariant derivative of T is computed and returned as a tensor_type. The components of T satisfy Killing's equations if all of the components of the result are zero. Note that the rank of the result is one more than that of T.
This routine is useful in two ways: first, as a means of verifying that a tensor satisfies Killing's equations, and second, as a way of generating the differential equations for any unknown components of a symmetric tensor which is to satisfy Killing's equations.
T must be of rank 1 or greater. If T is of second rank or more, the component array of T must use Maple's symmetric indexing function (since T must be symmetric).
Cf2 should be indexed using the cf2 indexing function provided by the tensor package. It can be computed using the Christoffel2 routine.
Simplification: This routine uses the `tensor/cov_diff/simp` and `tensor/lin_com/simp` routines for simplification purposes. The simplification routines are used indirectly by the symmetrize and cov_diff procedures as they are called by Killing_eqns. By default, `tensor/cov_diff/simp` and `tensor/lin_com/simp` are initialized to the `tensor/simp` routine. It is recommended that these routines be customized to suit the needs of the particular problem.
Examples
Generate the Killing equation expressions for an arbitrary vector in the geometry of Euclidean 3-space using polar coordinates: First, compute the Christoffel symbols of the second kind:
Next, define the arbitrary vector field:
Now compute the Killing equation expressions:
Now try it for an arbitrary symmetric 0, 2-tensor:
See Also
tensor, tensor/cov_diff, tensor[Christoffel2], tensor[simp], tensor[symmetrize]
Download Help Document