Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Slode[candidate_mpoints] - determine m-points for m-sparse power series solutions
Calling Sequence
candidate_mpoints(ode, var)
candidate_mpoints(LODEstr)
Parameters
ode
-
homogeneous linear ODE with polynomial coefficients
var
dependent variable, for example y(x)
LODEstr
LODEstruct data structure
Description
The candidate_mpoints command determines for all positive integers candidate points for m-sparse power series solutions of the given homogeneous linear ordinary differential equation with polynomial coefficients, called m-points.
If ode is an expression, then it is equated to zero.
The routine returns an error message if the differential equation ode does not satisfy the following conditions.
ode must be homogeneous and linear in var
ode must have polynomial coefficients in the independent variable of var, for example,
The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
This command returns a list of lists with three elements:
an integer , the sparse order;
a LODEstruct representing an -sparse differential equation with constant coefficients which is a right factor of the given equation;
a set of candidate -points.
The list is sorted by sparse order.
If for some sparse-order the given equation has a nontrivial m-sparse right factor with constant coefficients, then the equation has m-sparse power series solutions at an arbitrary point, and these solutions are solutions of this right factor. If the set of candidate m-points is not empty, then the equation may or may not have m-sparse power series solutions at such a point, but it does not have m-sparse power series solutions at any point outside this set.
Examples
See Also
LODEstruct, Slode, Slode[candidate_points], Slode[msparse_series_sol]
Download Help Document