Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Solving ODEs That Do Not Contain Either the Dependent or Independent Variable
Description
The general form of an nth order ODE that is missing the dependent variable is:
missing_y_ode := F(x,'seq(diff(y(x),x$i),i=1..n)');
where F is an arbitrary function of its arguments. The order can be reduced by introducing a new variable p(x) = diff(y(x),x). If the reduced ODE can be solved for p(x), the solution to the original ODE is determined as a quadrature.
The general form of an nth order ODE that is missing the independent variable is:
missing_x_ode := F(y(x),'seq(diff(y(x),x$i),i=1..n)');
where F is an arbitrary function of its arguments. The transformation
yields a reduction of order. If the reduced ODE can be solved for p(y), the solution to the original ODE can be given implicitly as
x = Int(1/p(y),y) + _C1;
See Murphy, "Ordinary Differential Equations and their Solutions", 1960, sections B2(1,2), and C2(1,2).
Examples
Explicit and implicit answers can be tested, in principle, using odetest:
In the case of multiple answers it is convenient to "map" odetest as follows:
The most general third order ODE missing x. This ODE cannot be solved to the end: its solution involves the solving of the most general second order ODE. However, its differential order can be reduced (see ?dsolve,ODESolStruc):
The most general third order ODE missing y.
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear; for other differential orders see odeadvisor,types.
Download Help Document