Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[linsolve] - solution of linear equations
Calling Sequence
linsolve(A, b, 'r', v)
linsolve(A, B, 'r', v)
Parameters
A
-
matrix
b
vector
B
r
(optional) name
v
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function linsolve(A, b) finds the vector x which satisfies the matrix equation . If A has n rows and m columns, then must be n and will be m, if a solution exists.
If has no solution or if Maple cannot find a solution, then the null sequence NULL is returned. If has many solutions, then the result will use global names (see below) to describe the family of solutions parametrically.
The call linsolve(A, B) finds the matrix X which solves the matrix equation where each column of X satisfies . If has does not have a unique solution, then NULL is returned.
The optional third argument is a name which will be assigned the rank of A.
The optional fourth argument allows you to specify the seed for the global names used as parameters in a parametric solution. If there is no fourth argument, the default, then the global names _t[1], _t[2], _t[3], ... will be used in the vector case, _t[1][1], _t[1][2], _t[2][1], ... in the matrix case (where _t[1][i] is used for the first column, _t[2][i] for the second, etc). This is particularly useful when programming with linsolve. If you declare v as a local variable and then call linsolve with fourth argument v, the resulting parameters (v[1], v[2], ...) will be local to the procedure.
An inert linear solver, Linsolve, is known to the mod function and can be used to solve systems of linear equations (matrix equations) modulo an integer m.
The command with(linalg,linsolve) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[leastsqrs], LinearAlgebra, LinearAlgebra[LinearSolve], Linsolve, solve
Download Help Document