Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[leastsqrs] - least-squares solution of equations
Calling Sequence
leastsqrs(A, b)
leastsqrs(S, v)
Parameters
A
-
matrix
b
vector
S
set of equations or expressions
v
set of names
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The call leastsqrs(A, b) returns the vector that best satisfies in the least-squares sense. The result returned is the vector x which minimizes .
The call leastsqrs(S, v) finds the values for the variables in v which minimize the equations or expressions in S in the least-squares sense. The result returned is a set of equations whose left-hand sides are from v.
For the linear case, if the third optional argument is 'optimize', the routine will find the optimal least square solution (i.e. the vector x with being the smallest). At present, the matrix entries must be rationals.
The command with(linalg,leastsqrs) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[linsolve], LinearAlgebra
Download Help Document