Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Expand - expansion over algebraic extension fields
Calling Sequence
evala(Expand(a))
Parameters
a
-
expression involving algebraic numbers or algebraic functions.
Description
This function expands product and powers of rational functions with algebraic coefficients. Powers of algebraic numbers and functions are reduced and denominators are rationalized.
Algebraic functions and algebraic numbers may be represented by radicals or with the RootOf notation (see type,algnum, type,algfun, type,radnum, type,radfun).
More precisely, the output satisfies the following properties:
Positive powers, products of sums and products of positive powers are expanded. The first operand of negative powers is expanded recursively, but negative powers are not expanded. Products of negative powers are not expanded either.
Algebraic numbers and functions have been reduced modulo the minimal polynomials. See Normal for a more precise definition.
Denominators have been rationalized. In other words, RootOfs and radicals defining algebraic numbers and functions have been removed from the denominator of rational functions.
Arguments of functions have been expanded recursively. Note that, unlike expand, Expand has no effect on mathematical functions such as sin or exp.
Other objects are frozen and considered as variables, except in the cases below.
If a is a set, a list, a range, a relation, or a series, then Expand is mapped over the object.
This function can be used to normalize polynomials over algebraic number fields. If the coefficients are algebraic functions or if a is not a polynomial, Expand cannot be used to decide whether a is mathematically equal to zero. See Normal in this case.
This function does not check that the algebraic quantities are independent.
Examples
See Also
evala, Expand, expand, Normal, RootOf
Download Help Document