Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Elliptic Integrals
Description
Elliptic integrals are integrals of the form
with R a rational function and y a polynomial of degree 3 or 4. This is the algebraic form of an elliptic integral. There are also trig forms (rational functions of sin and cos and a square root of a quadratic polynomial in sin and cos) and hyperbolic trig forms.
Elliptic integrals are reduced to their Legendre normal form in terms of elementary functions and the Elliptic functions EllipticF, EllipticE, and EllipticPi (or their complete versions).
Examples
Elementary answer
Symbolic parameters
Answer as sum of roots
Can evaluate to floating point:
Trig form
Indefinite trig form
Check answer:
See Also
EllipticE, EllipticF, EllipticPi
References
Labahn, G., and Mutrie, M. "Reduction of Elliptic Integrals to Legendre Normal Form." University of Waterloo Tech Report 97-21, Department of Computer Science, 1997.
Download Help Document