Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
diffalg[belongs_to] - test if a differential polynomial belongs to a radical differential ideal
Calling Sequence
belongs_to (q, J)
Parameters
q
-
differential polynomial
J
radical differential ideal given by a characteristic decomposition.
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The function belongs_to returns true if q belongs to J. Otherwise, false is returned.
Mathematically, q belongs to J if and only if q vanishes on all the zeros of J.
The differential polynomial q belongs to J if and only if it belongs to all the components of the characteristic decomposition.
q belongs to a characterizable component of J if and only if the differential remainder of q by the differential characteristic set defining is zero.
Characteristic decomposition of radical differential ideal are computed by Rosenfeld_Groebner.
The command with(diffalg,belongs_to) allows the use of the abbreviated form of this command.
Examples
See Also
diffalg, diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/differential_sprem, diffalg(deprecated)/reduced_form, diffalg(deprecated)/Rosenfeld_Groebner, diffalg(deprecated)[equations], DifferentialAlgebra[BelongsTo]
Download Help Document