Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
algcurves[plot_knot] - make a tubeplot for a singularity knot
Calling Sequence
plot_knot(f, x, y, opt)
Parameters
f
-
algebraic curve with a singularity at the point 0
x, y
variables
opt
(optional) a sequence of options
Description
Let f be a polynomial in x and y giving an algebraic curve in the plane C^2 with a singularity at the point . The output of this procedure is called the singularity knot of this singularity. This knot is defined as follows: By identifying C^2 with R^4 the curve can be viewed as a two-dimensional surface over the real numbers. This procedure computes the intersection of this surface with a sphere in R^4 with radius epsilon and center 0. The intersection consists of a number of closed curves over the real numbers. After applying a projection from the sphere (which is three-dimensional over R) to R^3 these curves can be plotted by the tubeplot command in the plots package. Such a plot gives information about the singularity of f at the point 0. See also: E. Brieskorn, H. Knörrer: Ebene Algebraische Kurven, Birkhauser 1981.
The curve given by f need not be irreducible, but f must be square-free otherwise this procedure does not work.
If printlevel > 1 the number of branches will be printed to the screen. Each branch (i.e. place above the point 0) corresponds to one component in the knot.
Options
epsilon=value -- the radius of the sphere. The default is 1. In some cases a smaller number must be chosen for the picture to be correct.
color=list -- specifying a list of colors results in a plot where each branch gets its own color.
The options for tubeplot can be used as well. In plot_knot these options have the following default values: numpoints=150, radius=0.05, tubepoints=5, scaling=constrained, and style=surface.
Examples
This is the same knot as above, but it looks different because the projection point is different now that x and y are switched. This is the command to create the plot from the Plotting Guide.
See Also
plots[tubeplot]
Download Help Document